Transcriptional mutagenesis reduces splicing fidelity in mammalian cells
نویسندگان
چکیده
Splicing fidelity is essential to the maintenance of cellular functions and viability, and mutations or natural variations in pre-mRNA sequences and consequent alteration of splicing have been implicated in the etiology and progression of numerous diseases. The extent to which transcriptional errors or lesion-induced transcriptional mutagenesis (TM) influences splicing fidelity is not currently known. To investigate this, we employed site-specific DNA lesions on the transcribed strand of a minigene splicing reporter in normal mammalian cells. These were the common mutagenic lesions O6-methylguanine (O6-meG) and 8-oxoguanine (8-oxoG). The minigene splicing reporters were derived from lamin A (LMNA) and proteolipid protein 1 (PLP1), both with known links to human diseases that result from deregulated splicing. In cells with active DNA repair, 1-4% misincorporation occurred opposite the lesions, which increased to 20-40% when repair was compromised. Furthermore, our results reveal that TM at a splice site significantly reduces in vivo splicing fidelity, thereby changing the relative expression of alternative splicing forms in mammalian cells. These findings suggest that splicing defects caused by transcriptional errors can potentially lead to phenotypic cellular changes and increased susceptibility to the development of disease.
منابع مشابه
Colony Forming Unit Endothelial Cells Do not Exhibit Telomerase Alternative Splicing Variants and Activity
Introduction: Endothelial progenitor colony forming unit-endothelial cells (CFU-EC) were first believed to be the progenitors of endothelial cells, named endothelial progenitor cells. Further studies revealed that they are monocytes regulating vasculogenesis. The main hindrance of these cells for therapeutic purposes is their low frequency and limited replicative potentials. This study was unde...
متن کاملEfficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells
Mammalian cells are constantly and unavoidably exposed to DNA damage from endogenous and exogenous sources, frequently to the detriment of genomic integrity and biological function. Cells acquire a large number of chemically diverse lesions per day, and each can have a different genetic fate and biological consequences. However, our knowledge of how and when specific lesions are repaired or how...
متن کاملExpression of Autographa californica multiple nucleopolyhedrovirus genes in mammalian cells and upregulation of the host beta-actin gene.
The gene expression of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was examined in two types of mammalian cells, human HeLa14 and hamster BHK cells. DNA microarray analysis followed by reverse transcription-PCR identified at least 12 viral genes transcribed in both HeLa14 cells and BHK cells inoculated with AcMNPV. 5' rapid amplification of cDNA ends was carried out to examine...
متن کاملSplicing promotes rapid and efficient mRNA export in mammalian cells.
The numerous steps in protein gene expression are extensively coupled to one another through complex networks of physical and functional interactions. Indeed, >25 coupled reactions, often reciprocal, have been documented among such steps as transcription, capping, splicing, and polyadenylation. Coupling is usually not essential for gene expression, but instead enhances the rate and/or efficienc...
متن کاملBase excision repair fidelity in normal and cancer cells.
In mammalian cells, base excision repair (BER) is the major repair pathway involved in the removal of non-bulky damaged nucleotides. The fidelity of BER is dependent on the polymerization step, where the major BER DNA polymerase (Pol beta) must incorporate the correct Watson-Crick base paired nucleotide into the one nucleotide repair gap. Recent studies have indicated that expression of some Po...
متن کامل